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Abstract. In this paper, we prove a sufficient condition for two long-range orders being either
present or absent simultaneously in the absolute ground state of a lattice many-body boson or
fermion model. As an application of this theorem, we give a simplified proof on the coexistence
of the resonating valence bond (RVB) long-range order and the on-site-pairing long-range order
in the ground state of the Hubbard model.

In the study of many-body systems, the existence of various long-range correlations in their
ground states is a problem of fundamental importance. In general, the presence of a long-
range order in the ground state of the system will completely determine the low-temperature
behaviour of the system and leads to some of the most interesting phenomena, such as
magnetism, superfluidity and superconductivity. However, as far as the analytical work is
concerned, the existence of a specific long-range order in a concrete model is notoriously
difficult to be established on a rigorous basis. For example, the famous Heisenberg model
was proposed in 1928 [1] to explain the magnetic properties of insulators. However, it
took about 40 years to show that, in one or two dimensions, the magnetic long-range
orders do not exist in this model, when the temperatureT 6= 0 [2]. For the spin-
1
2 antiferromagnetic Heisenberg model, the existence of an antiferromagnetic long-range
order in three dimensions at a non-zero temperature was established much later [3] and the
existence of this long-range order in two dimensions,T = 0, still remains an open problem
[4]. Here, a great challenge to theorists is to find the proper methods for studying a specified
model.

In a previous paper [5], we introduced a new method to show the absence of some
long-range orders in a lattice many-body system. More precisely, we proved the following
theorem.

Theorem 1. Let H3 = H0 + V be the Hamiltonian of a lattice many-body system, where
H0 represents the kinetic energy of particles andV is the interaction Hamiltonian. Assume
that V is short-ranged and its intensity|V | is bounded. LetÂi and B̂i be two localized
operators centered at sitei. If they satisfy the following commutation relation

[H3, Âi] = αB̂i (1)

whereα 6= 0 is a complex constant, then the absolute ground state90 of H3 does not have
a long-range order of operator̂Bi.
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As an application of theorem 1, in [6], we proved that, in thedopednegative-U Hubbard
model, the so-calledη-pairing long-range order [7, 8] is actually absent. In [9], we further
applied theorem 1 to study the effect of a staggered crystalline field on the antiferromagnetic
long-range order in some antiferromagnetic models.

In this paper, we shall further pursue this commutator approach and prove a sufficient
condition for two long-range orders coexisting in a lattice many-body system. Then, as
an application of this new theorem, we show that, when the Hubbard model is doped, the
on-site pairing long-range order must coexist with the so-called resonating valence bond
(RVB) order [10, 11] in the absolute ground states of the Hubbard Hamiltonian.

Before stating our theorem in a precise form, we would like to recall several definitions
and introduce some useful notation.

In solid-state physics, most of the interesting models are defined on a lattice.
Consequently, their Hamiltonians have a discrete form. Take a finite lattice3 with N3

lattice sites and letH3 be the Hamiltonian of a many-body boson or fermion model defined
on 3. Then, the Hilbert space ofH3 is of the following form:

V3 =
∏
i∈3

⊗Vi (2)

whereVi is the relevant configuration space at sitei (for instance, for the Hubbard model,
Vi is spanned by|0〉, the empty-site configuration,| ↑〉 and | ↓〉, the singly-occupied
configurations, as well as| ↑↓〉, the doubly-occupied configuration). In terms ofV3, H3

can now be written as a matrix. Let̂N be the total number operator of particles in the
system andµ be the chemical potential. We denote the absolute ground state ofH3 − µN̂

by 90(µ, 3).
Let Ĝi be a localized operator defined at sitei. Following Yang [12], we define a

reduced density matrixM(Ĝi) = (Mij) by

Mij ≡ 〈90(µ, 3)|Ĝ†
iĜj |90(µ, 3)〉. (3)

Then,90(µ, 3) has a long-range order of̂Gi if and only if the largest eigenvalueλmax of
M(Ĝi) satisfies the condition

λmax > DN3 (4)

whereD > 0 is a constant independent ofN3, asN3 → ∞ andN/N3 → ρ 6= 0. In fact,
in [12], Yang explicitly showed that, if inequality (4) holds, then

lim
|i−j|→∞

lim
N3→∞

〈90(µ, 3)|Ĝ†
iĜj |90(µ, 3)〉 6= 0 (5)

must also hold.
By applying the variational principle, condition (4) for90(µ, 3) having a long-range

order of Ĝi can be slightly relaxed. Letf (i) be a complex function defined on lattice3.
f (i) is called admissible if|f (i)| = 1. By the variational principle, we have

λmax >
∑

i,j∈3

f (i)Mijf (j) ≡ 〈f |M(Ĝi)|f 〉 (6)

holds for any admissible functionf (i). Therefore, if〈f0|M(Ĝi)|f0〉 > DN3 holds for
some admissible functionf0(i), inequality (4) must be true. In particular, when3 is
a finite d-dimensional hypercubic lattice with the periodic boundary condition, we may
choose an admissible function asfq(i) = (1/

√
N3) exp(−iq · i). Consequently,

〈fq|M(Ĝi)|fq〉 = 1

N3

∑
i,j∈3

〈90(µ, 3)|Ĝ†
iĜj |90(µ, 3)〉 exp(iq · (i − j))

≡ 〈90(µ, 3)|Ĝ†(q)Ĝ(q)|90(µ, 3)〉 (7)
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whereĜq ≡ (1/
√

N3)
∑

i∈3 Ĝi exp(−iq · i) andq = (q1, . . . , qd) is a reciprocal vector of
3. In this case, the presence of a long-range ordering ofĜi in the ground state90(µ, 3)

may be thought as a Bose–Einstein condensate of theĜ-wave at some reciprocal vectorq0,
which is characterized by

〈90(µ, 3)|Ĝ†
q0

Ĝq0|90(µ, 3)〉 > DN3. (8)

With these definitions and notation, we now summarize our new results in the following
theorem.

Theorem 2. Let H3 = H0 + V be the Hamiltonian of a lattice many-body model. We
assume that the interactionV is short-ranged with a characteristic radiusR and its intensity
|V | 6 U0 < ∞. Let Âi, B̂i and Ĉi be some localized operators defined on lattice3. If
these operators satisfy the following commutation relation

[H3 − µN̂, Âi] = βB̂i + γ Ĉi (9)

whereβ 6= 0 andγ 6= 0 are some complex constants, then the long-range orders ofB̂i and
Ĉi must be either present or absent simultaneously in the absolute ground state90(µ, 3)

of the HamiltonianH3 − µN̂ .

Before proceeding to the proof of this theorem, let us see why these statements should
be true by a less rigorous but plausible argument. Ignoring mathematical rigour temporarily,
we consider the HamiltonianH∞ defined on thewhole and infinitelattice and let90 be an
absolute ground state ofH∞. (Indeed, one should be more careful when one handles these
objects. For instance, the expectation valueE0 of H∞ in 90 is actually−∞ and, hence, is
ill defined.) Now, let us formally calculate the expectation value of commutator (9) in90.
We obtain

〈90|[H∞ − µN̂, Âi]|90〉 = (E0 − E0)〈90|Âi|90〉 = 0

= β〈90|B̂i|90〉 + γ 〈90|Ĉi|90〉. (10)

Therefore, asβ 6= 0 andγ 6= 0, we should have

〈90|B̂i|90〉 = −γ

β
〈90|Ĉi|90〉. (11)

In physics, if a many-body system has a long-range order ofB̂i, one will expect that
the expectation value of̂Bi in 90 does not vanish. Consequently, by identity (11), the
expectation value of̂Ci in 90 must also be non-zero. Therefore, the system has a long-
range order ofĈi, too. In other words, the two long-range orders are simultaneously present
in the system.

In the following, we shall establish theorem 2 on a mathematically rigorous basis by
studying the well-defined correlation functions ofÂi, B̂i andĈi on afinite lattice3. Then,
in the last step of our proof, we shall take the thermodynamic limit.

Proof of the theorem. First, we notice that, in terms of the correlation functions ofB̂i and
Ĉi, the theorem can be re-formulated in the following equivalent form. Under the condition
of theorem 2, asN3 → ∞ andN/N3 → ρ 6= 0, inequality

〈90(µ, 3)|B̂†(f )B̂(f )|90(µ, 3)〉 > D1N3 (12)
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holds for some admissible functionf (i), if and only if

〈90(µ, 3)|Ĉ†(f )Ĉ(f )|90(µ, 3)〉 > D2N3 (13)

also holds for the same functionf (i). In equations (12) and (13),Ĝ(f ) ≡
(1/

√
N3)

∑
i∈3 f (i)Ĝi, where Ĝi = B̂i or Ĉi. Naturally, the constantsD1 > 0 and

D2 > 0 may not be equal.
Now, we take an arbitrary admissible functionf (i) and rewrite commutator (9) as

[H3 − µN̂, Â(f )] = βB̂(f ) + γ Ĉ(f ) ≡ K̂(f ). (14)

Consider the correlation function of̂K(f ). Apparently, we have

0 6 〈90(µ, 3)|K̂†(f )K̂(f )|90(µ, 3)〉
6 〈90(µ, 3)|K̂†(f )K̂(f )|90(µ, 3)〉 + 〈90(µ, 3)|K̂(f )K̂†(f )|90(µ, 3)〉
≡ SK̂(f ). (15)

Introducing a complete set of the eigenvectors{9n(µ, 3)} of H3 − µN̂ , SK̂(f ) can be
further written as

SK̂(f ) =
∑

n

(|〈9n(µ, 3)|K̂(f )|90(µ, 3)〉|2 + |〈9n(µ, 3)|K̂†(f )|90(µ, 3)〉|2)

=
∑

n

{ |〈9n(µ, 3)|K̂(f )|90(µ, 3)〉|√
En − E0

(|〈9n|K̂(f )|90〉|
√

En − E0)

+|〈9n(µ, 3)|K̂†(f )|90(µ, 3)〉|√
En − E0

(|〈9n|K̂†(f )|90〉|
√

En − E0)

}
. (16)

In the last line of equation (16), we used the fact that90(µ, 3) is the absolute ground
state ofH3 and, hence,

√
En − E0 is well defined. However, there is one dangerous point

which should be clarified here. Assume that some eigenvector9n is degenerate with90.
In this case, we have

√
En − E0 = 0. That will make the corresponding fraction term in

equation (16) ill defined. Fortunately, this danger can be easily eliminated by applying
commutator (14) to the numerator of the term. In fact, by the commutation relation, we
have

〈9n(µ, 3)|K̂(f )|90(µ, 3)〉 = (En − E0)〈9n(µ, 3)|Â(f )|90(µ, 3)〉 = 0 (17)

whenEn − E0 = 0. Similarly, we can also show that〈9n|K̂†|90〉 = 0. Consequently, the
fraction term can be simply put equal to zero.

Next, we apply the Cauchy–Schwarz inequality(
∑

n anbn) 6
√

(
∑

n |an|2)
√

(
∑

n |bn|2)
to the right-hand side of equation (16). We obtain

SK̂(f ) 6
√∑

n

(|〈9n|K̂(f )|90〉|2 + |〈9n|K̂†(f )|90〉|2)(En − E0)

×
√√√√∑

n

|〈9n|K̂(f )|90〉|2 + |〈9n|K̂†(f )|90〉|2
En − E0

. (18)

The first factor on the right-hand side of inequality (18) is simply equal to

m(K̂(f )) ≡
√

〈90(µ, 3)|[K̂†(f ), [H3 − µN̂, K̂(f )]] |90(µ, 3)〉. (19)
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On the other hand, by using commutation relation (14), the second factor on the right-hand
side of inequality (18) can be simplified as√√√√∑

n

|〈9n|K̂†(f )|90〉|2 + |〈9n|K̂(f )|90〉|2
En − E0

=
√∑

n

(|〈9n|Â†(f )|90〉|2 + |〈9n|Â(f )|90〉|2)(En − E0)

=
√

〈90(µ, 3)|[Â†(f ), [H3 − µN̂, Â(f )]] |90(µ, 3)〉
≡ m(Â(f )). (20)

Therefore, we have

0 6 〈90(µ, 3)|K̂†(f )K̂(f )|90(µ, 3)〉 6 SK̂(f ) 6 m(Ê(f ))m(Â(f )). (21)

An important observation is that, under the condition of theorem 2, bothm(K̂(f ))

and m(Â(f )) are quantities ofO(1) as N3 tends to infinity. Therefore, the correlation
function of K̂i at ‘momentumf ’ is, at most, a quantity ofO(1). For definiteness, let us
considerm(Â(f )). By its definition,m2(Â(f )) is the expectation value of the commutator
[A†(f ), [H3 − µN̂, Â(f )]] in the absolute ground state90(3). Since Âi is a localized
operator andV is short-ranged, the commutator must be of the following form,

[A†(f ), [H3 − µN̂, Â(f )]] = 1

N3

∑
i,j∈3

[A†
i, [H3 − µN̂, Âj ]]f (i)f (j) = 1

N3

∑
i∈3

Ôi(f )

(22)

where{Ôi(f )} are some localized operators dependent off (i) (if V is not short-ranged,
then {Ôi(f )} may be not localized). In general, they are polynomials of the creation and
annihilation operators of bosons or fermions. These statements can be easily checked by
calculating the commutator for a concrete model, say the Hubbard model. Therefore, we
have

0 6 m2(Â(f )) 6 1

N3

× N3 max
i,f

|〈90(3)|Ôi(f )|90(3)〉|. (23)

On the other hand, since|V | is bounded, we can find a constantL > 0, which is independent
of i, f and3, such that

|〈90(3)|Ôi(f )|90(3)〉| 6 L (24)

holds for all the localized operators{Ôi(f )}. Combining equations (22)–(24), we obtain

m2(Â(f )) = O(1) (25)

asN3 → ∞.

Remark 1. In fact, inequality (24) can be formally proven by using the well known
Gershgorin theorem in matrix theory [13]. This theorem tells us that, for ann × n matrix
A = (aij ), each of its eigenvalues satisfies the following inequality:

|λ| 6 max
16i6n

n∑
j=1

|aij |. (26)
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We apply this theorem to estimate the expectation value〈90(3)|Ôi(f )|90(3)〉. Let λmax

andλmin be the maximal and minimal eigenvalues of the operatorÔi(f ), respectively. By
the variational principle and the Gershgorin theorem, we should have

|〈90(3)|Ôi(f )|90(3)〉| 6 max(|λmin|, |λmax|) 6 max
m

∑
j

|[Oi(f )]mj | (27)

whereOi(f ) is the matrix representation of the operatorÔi(f ) in terms of a specific basis.

On the other hand, sincêOi(f ) is a localized operator, the number of non-vanishing terms in
each row ofOi(f ) cannot exceed a constant proportional toR, the range of the interaction
potentialV . Furthermore, each non-zero matrix element has an absolute value bounded by
a positive constantM0, which is roughly proportional to|V |. Consequently, inequality (24)
holds if we chooseL = O(R|V |).

We expand the correlation function of̂Ki as

〈90(µ, 3)|K̂†(f )K̂(f )|90(µ, 3)〉
= |β|2〈90(3)|B̂†(f )B̂(f )|90(3)〉 + βγ 〈90(3)|B̂†(f )Ĉ(f )|90(3)〉

+βγ 〈90(3)|Ĉ†(f )B̂(f )|90(3)〉 + |γ |2〈90(3)|Ĉ†(f )Ĉ(f )|90(3)〉. (28)

By shifting the mixing terms to the right-hand side of inequality (21) and applying the
Cauchy–Schwarz inequality to these terms, we can further write the inequality as

|β|2〈90(3)|B̂†(f )B̂(f )|90(3)〉 + |γ |2〈90(3)|Ĉ†(f )Ĉ(f )|90(3)〉
6 m(Â(f ))m(K̂(f )) − βγ 〈90|B̂†(f )Ĉ(f )|90〉 − γ β〈90|Ĉ†(f )B̂(f )|90〉
6 m(Â(f ))m(K̂(f )) + 2|β||γ |

√
〈90|B̂†(f )B̂(f )|90〉〈90|Ĉ†(f )Ĉ(f )|90〉.

(29)

This inequality implies theorem 2.
First, let us assume that90(µ, 3) has a long-range order of̂Bi at momentumf but does

not support a long-range order ofĈi. We shall show that this assumption is in contradiction
with inequality (29). By the definition of long-range orders, there should be a constant
D > 0, which is independent ofN3, such that

〈90(µ, 3)|B̂†(f )B̂(f )|90(µ, 3)〉 > DN3 (30)

as N3 → ∞. Consequently, the left-hand side of inequality (29) is a quantity of order
O(N3). On the other hand, since90(µ, 3) has no long-range orders ofĈi, the correlation
function of Ĉi is, at most, a quantity ofO(1) in the thermodynamic limit. Therefore, the
right-hand side of inequality (29) can be, at most, a quantity of orderO(

√
N3) since the

productm(Â(f ))m(K̂(f )) is of orderO(1) as we showed above. Consequently, inequality
(29) will be eventually violated asN3 → ∞. Therefore,90(µ, 3) must also have a
long-range order of̂Ci at the same momentumf .

Similarly, we can show that, if90(µ, 3) has a long-range order of̂Ci at momentumf ,
it must also have a long-range order ofB̂i at the same momentum. Otherwise, inequality
(29) is violated in the thermodynamic limit. Therefore, the long-range orders ofB̂i andĈi

must be either present or absent simultaneously in the absolute ground state90(µ, 3) of
the HamiltonianH3 − µN̂ .

Our proof is accomplished. �

Remark 2. Gershgorin’s theorem is a very powerful tool in finding bounds to the
eigenvalues of a specific matrix. Therefore, it has been widely used in studying many-
body models defined on lattices. For instance, in [14], we applied it to simplify the proof
of the Nagaoka theorem [15].



A lattice many-body system 847

As an application of theorem 2, let us consider thedopedHubbard model [16]. On
lattice 3, the Hubbard Hamiltonian is of the following form,

H3 = −t
∑

σ

∑
〈ij〉

(c
†
iσ cjσ + c

†
jσ ciσ ) + U

∑
i∈3

ni↑ni↓ (31)

wherec
†
iσ (ciσ ) is the fermion creation (annihilation) operator which creates (annihilates) a

fermion with spinσ at lattice sitei. ni↑ = c
†
i↑ci↑. 〈ij〉 denotes a pair of nearest-neighbour

sites of the lattice.t > 0 andU are two parameters representing the kinetic energy and
on-site interaction between fermions, respectively. Here, we shall allowU to be either
positive or negative. It is easy to see that this Hamiltonian commutes with the total fermion
number operator̂N . Consequently, the number of fermions is a good quantum number and
the Hilbert space ofH3 can be divided into numerous subspaces{V (N)}. Each of them
is characterized by an integerN and is called a sector. In particular, whenN = N3, the
number of lattice sites, the corresponding subspace is called half-filled. Other sectors are
called doped with either holes (N < N3) or electrons (N > N3).

Originally, this model was introduced to explain the Mott metal–insulator transitions
[17]. After the discovery of high-temperature superconductivity in the rare-earth-based
copper oxides, Anderson and his collaborators [10, 11] proposed that the physical properties
of these materials can be described by a two-dimensional Hubbard model and the ground
state of this model should be an RVB state. By definition, an RVB state9̃ is characterized
by a non-vanishing expectation value of the following operator

b̂〈ij〉 ≡ ci↑cj↓ − ci↓cj↑ (32)

within it. Here, i and j are a pair of nearest-neighbour lattice sites. We would like
to emphasize that̃9 is an eigenstate ofH∞, not H3. For any eigenstate93 of H3,
the expectation value of̂b〈ij〉, which contains only particle annihilation operators, will be
identically zero because93 is also an eigenvector of the total particle number operatorN̂ .
On the other hand,̃9 may not be an eigenvector of̂N if spontaneous symmetry breaking
occurs. Based on this proposal, Anderson developed a new theory for high-temperature
superconductivity.

However, as research went into depth, more and more results showed evidence which
disfavoured the existence of the RVB states in the Hubbard model. In particular, in a
paper of 1990 [18], Zhang noticed that the Hubbard HamiltonianH3 satisfies the following
commutation relation:

[H3 − µN̂, ci↑ci↓] = t
∑

j

b̂〈ij〉 − (1 − 2µ)Uci↑ci↓. (33)

Therefore, by using the less rigorous argument mentioned at the beginning of this paper,
Zhang showed that, whenµ 6= 1

2 (it corresponds to the doped cases), if the absolute ground
state of the model is an RVB state, it must also have an on-site pairing long-range order.
However, that is impossible for apositive-U Hubbard model. In [5] and [19], we made
Zhang’s argument rigorous by studying the correlation functions of the operatorsb̂〈ij〉 and
ci↑ci↓ in the absolute ground state90(µ, 3) of the Hubbard HamiltonianH3 − µN̂ . We
proved the following theorem.

Theorem 3. When the Hubbard model is doped, the RVB long-range order and the on-
site-pairing long-range order must be either present or absent simultaneously in its absolute
ground state.
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However, our proof had some short-comings. First, the proof was heavily dependent on
the fact that, in this special case, operatorci↑ci↓ appears on both sides of commutation
relation (33). Therefore, it is very difficult to generalize the proof to other cases, in
which operatorsÂI , B̂i and Ĉi are distinct. Second, this previous proof was complicated
and inelegant. With the newly-proved theorem 2 in this paper, these problems can be
simultaneously solved.

Taking Âi = Ĉi = ci↑ci↓ and B̂i = ∑
j b̂〈ij〉, we see that commutation relation (9) is

satisfied withβ = t and γ = −(1 − 2µ)U . Therefore, by theorem 2, the on-site-pairing
long-range order ofci↑ci↓ and the long-range order of

∑
j b̂〈ij〉 must be either present or

absent simultaneously in the doped Hubbard model.
In literature,

∑
j b̂〈ij〉 is called the s-wave RVB operator. Therefore, a more accurate

form of theorem 3 is the following corollary of theorem 2.

Corollary. When the Hubbard model is doped, an on-site-pairing long-range order must co-
exist with an s-wave RVB long-range order in the absolute ground state of the Hamiltonian.

On the physical basis, one expects that an on-site-pairing long-range order exists in the
absolute ground state of a dopednegative-U Hubbard model, which is a phenomenological
model widely used to study the superconductivity in a lattice fermion model. Consequently,
as the corollary of theorem 2 tells us, an RVB long-range order should also exist in the
dopednegative-U Hubbard model rather than in thepositive-U Hubbard model.

In summary, in this paper, we prove a sufficient condition for two long-range orders
being either present or absent simultaneously in the absolute ground state of a lattice many-
body model. As an application of this theorem, we give a simplified proof of a previous
theorem on the coexistence of the RVB long-range order and the on-site-pairing long-range
order in the absolute ground state of the doped Hubbard model.
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